1. Suppose $n \geq 2$ is a positive integer and imagine an n-simplex $J=$ $\left[v_{0}, \ldots, v_{n}\right]$ in \mathbb{R}^{n}. K is the simplicial complex in \mathbb{R}^{n} consisting of all the faces of J that have dimension 2 or less.
(a) Write down the Euler characteristic of K as a function of n.
(b) For any $i \in\{0,1, \ldots, n\}$, denote by $R_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the affine reflection in the affine hyperplane spanned by the $(n-1)$-dimensional face of J that does NOT contain v_{i}. Prove that for any $i, j \in\{0,1, \ldots, n\}$ the composition $R_{i} \circ R_{j}$ is an affine rotation.
(c) Define $L=K \cup\left\{R_{0}(\sigma) \mid \sigma \in K\right\}$. Prove that L is a simplicial complex.
(d) Find an explicit example of a simplex J as above such that $|L|$ is not a convex polyhedron in \mathbb{R}^{n}.
2. Define $f(x, y)=x^{2}-y-1$. Homogeneous coordinates in \mathbb{P}^{2} are taken with respect to the standard basis of \mathbb{R}^{3}. Polarity is taken with respect to the standard inner product on \mathbb{R}^{3}.
(a) Find a non-zero polynomial in three variables $F(x, y, z)$ such that $P(X(f) \times\{1\}) \subset P(X(F)) \subset \mathbb{P}^{2}$.
(b) Give the homogeneous coordinates of a point in $P(X(F)) \backslash P(X(f) \times$ $\{1\})$.
(c) Compute the polar of the projective line through the points $[1: 1: 1]$ and $[1: 2: 1]$ in \mathbb{P}^{2}.
(d) Prove that any two distinct projective planes in \mathbb{P}^{3} must intersect in a projective line.
3. Define a Riemannian chart (P, g) by $P=(0,6)^{3}$ and g is given by $g_{12}=$ $g_{21}=g_{23}=g_{32}=0$ and $g_{11}=g_{22}=g_{33}=1$ and $g_{13}(x, y, z)=$ $g_{31}(x, y, z)=\frac{y}{3}$.
(a) Define curves $\alpha, \beta:(-1,1) \rightarrow P$ by $\alpha(t)=\left((1-t)^{2}, 1-\sin (t), 1-t\right)$ and $\beta(t)=\left(e^{-2 t}, e^{-t}, e^{-t}\right)$. Prove that α and β cannot both be geodesics with respect to the metric g.
(b) Find the angle between the curves α and β at their intersection point $\alpha(0)=\beta(0)=(1,1,1)$.
(c) Find the length of the curve $\gamma:(-1,1) \rightarrow P$ defined by $\gamma(t)=$ $\left(1, e^{t}, e^{t}\right)$ with respect to g.
(d) Is $F: P \rightarrow P$ given by $F(x, y, z)=(3-(x-3), 3-(y-3), 3-(z-3))$ a Riemannian isometry from (P, g) to (P, g) ?
