Mock exam Geometry 2022

- 1. Suppose $n \geq 2$ is a positive integer and imagine an *n*-simplex $J = [v_0, \ldots, v_n]$ in \mathbb{R}^n . K is the simplicial complex in \mathbb{R}^n consisting of all the faces of J that have dimension 2 or less.
 - (a) Write down the Euler characteristic of K as a function of n.
 - (b) For any $i \in \{0, 1, ..., n\}$, denote by $R_i : \mathbb{R}^n \to \mathbb{R}^n$ the affine reflection in the affine hyperplane spanned by the (n-1)-dimensional face of J that does NOT contain v_i . Prove that for any $i, j \in \{0, 1, ..., n\}$ the composition $R_i \circ R_j$ is an affine rotation.
 - (c) Define $L = K \cup \{R_0(\sigma) | \sigma \in K\}$. Prove that L is a simplicial complex.
 - (d) Find an explicit example of a simplex J as above such that |L| is not a convex polyhedron in \mathbb{R}^n .
- 2. Define $f(x, y) = x^2 y 1$. Homogeneous coordinates in \mathbb{P}^2 are taken with respect to the standard basis of \mathbb{R}^3 . Polarity is taken with respect to the standard inner product on \mathbb{R}^3 .
 - (a) Find a non-zero polynomial in three variables F(x, y, z) such that $P(X(f) \times \{1\}) \subset P(X(F)) \subset \mathbb{P}^2$.
 - (b) Give the homogeneous coordinates of a point in $P(X(F)) \setminus P(X(f) \times \{1\})$.
 - (c) Compute the polar of the projective line through the points [1 : 1 : 1] and [1 : 2 : 1] in P².
 - (d) Prove that any two distinct projective planes in \mathbb{P}^3 must intersect in a projective line.
- 3. Define a Riemannian chart (P,g) by $P = (0,6)^3$ and g is given by $g_{12} = g_{21} = g_{23} = g_{32} = 0$ and $g_{11} = g_{22} = g_{33} = 1$ and $g_{13}(x,y,z) = g_{31}(x,y,z) = \frac{y}{3}$.
 - (a) Define curves $\alpha, \beta : (-1, 1) \to P$ by $\alpha(t) = ((1-t)^2, 1-\sin(t), 1-t)$ and $\beta(t) = (e^{-2t}, e^{-t}, e^{-t})$. Prove that α and β cannot both be geodesics with respect to the metric g.
 - (b) Find the angle between the curves α and β at their intersection point $\alpha(0) = \beta(0) = (1, 1, 1).$
 - (c) Find the length of the curve $\gamma : (-1,1) \to P$ defined by $\gamma(t) = (1, e^t, e^t)$ with respect to g.
 - (d) Is $F: P \to P$ given by F(x, y, z) = (3 (x 3), 3 (y 3), 3 (z 3))a Riemannian isometry from (P, g) to (P, g)?